

 Navigation

 	
 index

 	
 next |

 	django-model-utils 2.2 documentation

django-model-utils

Django model mixins and utilities.

Contents

	Setup
	Installation

	Dependencies

	Fields
	StatusField

	MonitorField

	SplitField
	Accessing a SplitField on a model

	Customized excerpting

	Models
	TimeFramedModel

	TimeStampedModel

	StatusModel

	Model Managers
	InheritanceManager

	QueryManager

	PassThroughManager

	Mixins

	Miscellaneous Utilities
	Choices

	Field Tracker
	Accessing a field tracker

	Tracking specific fields

	Checking changes using signals

Contributing

Please file bugs and send pull requests to the GitHub repository [https://github.com/carljm/django-model-utils/] and issue
tracker [https://github.com/carljm/django-model-utils/issues].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Carl Meyer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-model-utils 2.2 documentation

Setup

Installation

Install from PyPI with pip:

pip install django-model-utils

To use django-model-utils in your Django project, just import and
use the utility classes described in this documentation; there is no need to
modify your INSTALLED_APPS setting.

Dependencies

django-model-utils supports Django [http://www.djangoproject.com/] 1.4.2 and later on Python 2.6, 2.7,
3.2, and 3.3.

 Copyright 2013, Carl Meyer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-model-utils 2.2 documentation

Fields

StatusField

A simple convenience for giving a model a set of “states.”
StatusField is a CharField subclass that expects to find a
class attribute called STATUS on its model or you can pass
choices_name to use a different attribute name, and uses that as
its choices. Also sets a default max_length of 100, and sets
its default value to the first item in the STATUS choices:

from model_utils.fields import StatusField
from model_utils import Choices

class Article(models.Model):
 STATUS = Choices('draft', 'published')
 # ...
 status = StatusField()

(The STATUS class attribute does not have to be a Choices
instance, it can be an ordinary list of two-tuples).

Using a different name for the model’s choices class attribute

from model_utils.fields import StatusField
from model_utils import Choices

class Article(models.Model):
 ANOTHER_CHOICES = Choices('draft', 'published')
 # ...
 another_field = StatusField(choices_name='ANOTHER_CHOICES')

StatusField does not set db_index=True automatically; if you
expect to frequently filter on your status field (and it will have
enough selectivity to make an index worthwhile) you may want to add this
yourself.

MonitorField

A DateTimeField subclass that monitors another field on the model,
and updates itself to the current date-time whenever the monitored
field changes:

from model_utils.fields import MonitorField, StatusField

class Article(models.Model):
 STATUS = Choices('draft', 'published')

 status = StatusField()
 status_changed = MonitorField(monitor='status')

(A MonitorField can monitor any type of field for changes, not only a
StatusField.)

If a list is passed to the when parameter, the field will only
update when it matches one of the specified values:

from model_utils.fields import MonitorField, StatusField

class Article(models.Model):
 STATUS = Choices('draft', 'published')

 status = StatusField()
 published_at = MonitorField(monitor='status', when=['published'])

SplitField

A TextField subclass that automatically pulls an excerpt out of
its content (based on a “split here” marker or a default number of
initial paragraphs) and stores both its content and excerpt values in
the database.

A SplitField is easy to add to any model definition:

from django.db import models
from model_utils.fields import SplitField

class Article(models.Model):
 title = models.CharField(max_length=100)
 body = SplitField()

SplitField automatically creates an extra non-editable field
_body_excerpt to store the excerpt. This field doesn’t need to be
accessed directly; see below.

Accessing a SplitField on a model

When accessing an attribute of a model that was declared as a
SplitField, a SplitText object is returned. The SplitText
object has three attributes:

	content:

	The full field contents.

	excerpt:

	The excerpt of content (read-only).

	has_more:

	True if the excerpt and content are different, False otherwise.

This object also has a __unicode__ method that returns the full
content, allowing SplitField attributes to appear in templates
without having to access content directly.

Assuming the Article model above:

>>> a = Article.objects.all()[0]
>>> a.body.content
u'some text\n\n<!-- split -->\n\nmore text'
>>> a.body.excerpt
u'some text\n'
>>> unicode(a.body)
u'some text\n\n<!-- split -->\n\nmore text'

Assignment to a.body is equivalent to assignment to
a.body.content.

Note

a.body.excerpt is only updated when a.save() is called

Customized excerpting

By default, SplitField looks for the marker <!-- split -->
alone on a line and takes everything before that marker as the
excerpt. This marker can be customized by setting the SPLIT_MARKER
setting.

If no marker is found in the content, the first two paragraphs (where
paragraphs are blocks of text separated by a blank line) are taken to
be the excerpt. This number can be customized by setting the
SPLIT_DEFAULT_PARAGRAPHS setting.

 Copyright 2013, Carl Meyer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-model-utils 2.2 documentation

Models

TimeFramedModel

An abstract base class for any model that expresses a time-range. Adds
start and end nullable DateTimeFields, and a timeframed
manager that returns only objects for whom the current date-time lies
within their time range.

TimeStampedModel

This abstract base class just provides self-updating created and
modified fields on any model that inherits from it.

StatusModel

Pulls together StatusField, MonitorField and QueryManager
into an abstract base class for any model with a “status.”

Just provide a STATUS class-attribute (a Choices object or a
list of two-tuples), and your model will have a status field with
those choices, a status_changed field containing the date-time the
status was last changed, and a manager for each status that
returns objects with that status only:

from model_utils.models import StatusModel
from model_utils import Choices

class Article(StatusModel):
 STATUS = Choices('draft', 'published')

...

a = Article()
a.status = Article.STATUS.published

this save will update a.status_changed
a.save()

this query will only return published articles:
Article.published.all()

 Copyright 2013, Carl Meyer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-model-utils 2.2 documentation

Model Managers

InheritanceManager

This manager (contributed by Jeff Elmore [http://jeffelmore.org/2010/11/11/automatic-downcasting-of-inherited-models-in-django/]) should be attached to a base model
class in a model-inheritance tree. It allows queries on that base model to
return heterogenous results of the actual proper subtypes, without any
additional queries.

For instance, if you have a Place model with subclasses Restaurant and
Bar, you may want to query all Places:

nearby_places = Place.objects.filter(location='here')

But when you iterate over nearby_places, you’ll get only Place
instances back, even for objects that are “really” Restaurant or Bar.
If you attach an InheritanceManager to Place, you can just call the
select_subclasses() method on the InheritanceManager or any
QuerySet from it, and the resulting objects will be instances of
Restaurant or Bar:

from model_utils.managers import InheritanceManager

class Place(models.Model):
 # ...
 objects = InheritanceManager()

class Restaurant(Place):
 # ...

class Bar(Place):
 # ...

nearby_places = Place.objects.filter(location='here').select_subclasses()
for place in nearby_places:
 # "place" will automatically be an instance of Place, Restaurant, or Bar

The database query performed will have an extra join for each subclass; if you
want to reduce the number of joins and you only need particular subclasses to
be returned as their actual type, you can pass subclass names to
select_subclasses(), much like the built-in select_related() method:

nearby_places = Place.objects.select_subclasses("restaurant")
restaurants will be Restaurant instances, bars will still be Place instances

nearby_places = Place.objects.select_subclasses("restaurant", "bar")
all Places will be converted to Restaurant and Bar instances.

It is also possible to use the subclasses themselves as arguments to
select_subclasses, leaving it to calculate the relationship for you:

nearby_places = Place.objects.select_subclasses(Restaurant)
restaurants will be Restaurant instances, bars will still be Place instances

nearby_places = Place.objects.select_subclasses(Restaurant, Bar)
all Places will be converted to Restaurant and Bar instances.

It is even possible to mix and match the two:

nearby_places = Place.objects.select_subclasses(Restaurant, "bar")
all Places will be converted to Restaurant and Bar instances.

InheritanceManager also provides a subclass-fetching alternative to the
get() method:

place = Place.objects.get_subclass(id=some_id)
"place" will automatically be an instance of Place, Restaurant, or Bar

If you don’t explicitly call select_subclasses() or get_subclass(),
an InheritanceManager behaves identically to a normal Manager; so
it’s safe to use as your default manager for the model.

Note

Due to Django bug #16572 [https://code.djangoproject.com/ticket/16572], on Django versions prior to 1.6
InheritanceManager only supports a single level of model inheritance;
it won’t work for grandchild models.

QueryManager

Many custom model managers do nothing more than return a QuerySet that
is filtered in some way. QueryManager allows you to express this
pattern with a minimum of boilerplate:

from django.db import models
from model_utils.managers import QueryManager

class Post(models.Model):
 ...
 published = models.BooleanField()
 pub_date = models.DateField()
 ...

 objects = models.Manager()
 public = QueryManager(published=True).order_by('-pub_date')

The kwargs passed to QueryManager will be passed as-is to the
QuerySet.filter() method. You can also pass a Q object to
QueryManager to express more complex conditions. Note that you can
set the ordering of the QuerySet returned by the QueryManager
by chaining a call to .order_by() on the QueryManager (this is
not required).

PassThroughManager

A common “gotcha” when defining methods on a custom manager class is that those
same methods are not automatically also available on the QuerySets returned by
that manager, so are not “chainable”. This can be counterintuitive, as most of
the public QuerySet API is mirrored on managers. It is possible to create a
custom Manager that returns QuerySets that have the same additional methods,
but this requires boilerplate code. The PassThroughManager class
(contributed by Paul McLanahan [http://paulm.us/post/3717466639/passthroughmanager-for-django]) removes this boilerplate.

To use PassThroughManager, rather than defining a custom manager with
additional methods, define a custom QuerySet subclass with the additional
methods you want, and pass that QuerySet subclass to the
PassThroughManager.for_queryset_class() class method. The returned
PassThroughManager subclass will always return instances of your custom
QuerySet, and you can also call methods of your custom QuerySet
directly on the manager:

from datetime import datetime
from django.db import models
from django.db.models.query import QuerySet
from model_utils.managers import PassThroughManager

class PostQuerySet(QuerySet):
 def by_author(self, user):
 return self.filter(user=user)

 def published(self):
 return self.filter(published__lte=datetime.now())

 def unpublished(self):
 return self.filter(published__gte=datetime.now())

class Post(models.Model):
 user = models.ForeignKey(User)
 published = models.DateTimeField()

 objects = PassThroughManager.for_queryset_class(PostQuerySet)()

Post.objects.published()
Post.objects.by_author(user=request.user).unpublished()

Mixins

Each of the above manager classes has a corresponding mixin that can be used to
add functionality to any manager. For example, to create a GeoDjango
GeoManager that includes “pass through” functionality, you can write the
following code:

from django.contrib.gis.db import models
from django.contrib.gis.db.models.query import GeoQuerySet

from model_utils.managers import PassThroughManagerMixin

class PassThroughGeoManager(PassThroughManagerMixin, models.GeoManager):
 pass

class LocationQuerySet(GeoQuerySet):
 def within_boundary(self, geom):
 return self.filter(point__within=geom)

 def public(self):
 return self.filter(public=True)

class Location(models.Model):
 point = models.PointField()
 public = models.BooleanField(default=True)
 objects = PassThroughGeoManager.for_queryset_class(LocationQuerySet)()

Location.objects.public()
Location.objects.within_boundary(geom=geom)
Location.objects.within_boundary(geom=geom).public()

Now you have a “pass through manager” that can also take advantage of
GeoDjango’s spatial lookups. You can similarly add additional functionality to
any manager by composing that manager with InheritanceManagerMixin or
QueryManagerMixin.

(Note that any manager class using InheritanceManagerMixin must return a
QuerySet class using InheritanceQuerySetMixin from its get_queryset
method. This means that if composing InheritanceManagerMixin and
PassThroughManagerMixin, the QuerySet class passed to
PassThroughManager.for_queryset_class must inherit
InheritanceQuerySetMixin.)

 Copyright 2013, Carl Meyer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	django-model-utils 2.2 documentation

Miscellaneous Utilities

Choices

Choices provides some conveniences for setting choices on a Django model field:

from model_utils import Choices

class Article(models.Model):
 STATUS = Choices('draft', 'published')
 status = models.CharField(choices=STATUS, default=STATUS.draft, max_length=20)

A Choices object is initialized with any number of choices. In the
simplest case, each choice is a string; that string will be used both
as the database representation of the choice, and the human-readable
representation. Note that you can access options as attributes on the
Choices object: STATUS.draft.

But you may want your human-readable versions translated, in which
case you need to separate the human-readable version from the DB
representation. In this case you can provide choices as two-tuples:

from model_utils import Choices

class Article(models.Model):
 STATUS = Choices(('draft', _('draft')), ('published', _('published')))
 status = models.CharField(choices=STATUS, default=STATUS.draft, max_length=20)

But what if your database representation of choices is constrained in
a way that would hinder readability of your code? For instance, you
may need to use an IntegerField rather than a CharField, or
you may want the database to order the values in your field in some
specific way. In this case, you can provide your choices as triples,
where the first element is the database representation, the second is
a valid Python identifier you will use in your code as a constant, and
the third is the human-readable version:

from model_utils import Choices

class Article(models.Model):
 STATUS = Choices((0, 'draft', _('draft')), (1, 'published', _('published')))
 status = models.IntegerField(choices=STATUS, default=STATUS.draft)

You can index into a Choices instance to translate a database
representation to its display name:

status_display = Article.STATUS[article.status]

Option groups can also be used with Choices; in that case each
argument is a tuple consisting of the option group name and a list of
options, where each option in the list is either a string, a two-tuple,
or a triple as outlined above. For example:

from model_utils import Choices

class Article(models.Model):
STATUS = Choices(('Visible', ['new', 'archived']), ('Invisible', ['draft', 'deleted']))

Choices can be concatenated with the + operator, both to other Choices
instances and other iterable objects that could be converted into Choices:

from model_utils import Choices

GENERIC_CHOICES = Choices((0, 'draft', _('draft')), (1, 'published', _('published')))

class Article(models.Model):
 STATUS = GENERIC_CHOICES + [(2, 'featured', _('featured'))]
 status = models.IntegerField(choices=STATUS, default=STATUS.draft)

Field Tracker

A FieldTracker can be added to a model to track changes in model fields. A
FieldTracker allows querying for field changes since a model instance was
last saved. An example of applying FieldTracker to a model:

from django.db import models
from model_utils import FieldTracker

class Post(models.Model):
 title = models.CharField(max_length=100)
 body = models.TextField()

 tracker = FieldTracker()

Note

django-model-utils 1.3.0 introduced the ModelTracker object for
tracking changes to model field values. Unfortunately ModelTracker
suffered from some serious flaws in its handling of ForeignKey fields,
potentially resulting in many extra database queries if a ForeignKey
field was tracked. In order to avoid breaking API backwards-compatibility,
ModelTracker retains the previous behavior but is deprecated, and
FieldTracker has been introduced to provide better ForeignKey
handling. All uses of ModelTracker should be replaced by
FieldTracker.

Summary of differences between ModelTracker and FieldTracker:

	The previous value returned for a tracked ForeignKey field will now
be the raw ID rather than the full object (avoiding extra database
queries). (GH-43)

	The changed() method no longer returns the empty dictionary for all
unsaved instances; rather, None is considered to be the initial value
of all fields if the model has never been saved, thus changed() on an
unsaved instance will return a dictionary containing all fields whose
current value is not None.

	The has_changed() method no longer crashes after an object’s first
save. (GH-53).

Accessing a field tracker

There are multiple methods available for checking for changes in model fields.

previous

Returns the value of the given field during the last save:

>>> a = Post.objects.create(title='First Post')
>>> a.title = 'Welcome'
>>> a.tracker.previous('title')
u'First Post'

Returns None when the model instance isn’t saved yet.

has_changed

Returns True if the given field has changed since the last save:

>>> a = Post.objects.create(title='First Post')
>>> a.title = 'Welcome'
>>> a.tracker.has_changed('title')
True
>>> a.tracker.has_changed('body')
False

The has_changed method relies on previous to determine whether a
field’s values has changed.

changed

Returns a dictionary of all fields that have been changed since the last save
and the values of the fields during the last save:

>>> a = Post.objects.create(title='First Post')
>>> a.title = 'Welcome'
>>> a.body = 'First post!'
>>> a.tracker.changed()
{'title': 'First Post', 'body': ''}

The changed method relies on has_changed to determine which fields
have changed.

Tracking specific fields

A fields parameter can be given to FieldTracker to limit tracking to
specific fields:

from django.db import models
from model_utils import FieldTracker

class Post(models.Model):
 title = models.CharField(max_length=100)
 body = models.TextField()

 title_tracker = FieldTracker(fields=['title'])

An example using the model specified above:

>>> a = Post.objects.create(title='First Post')
>>> a.body = 'First post!'
>>> a.title_tracker.changed()
{'title': None}

Checking changes using signals

The field tracker methods may also be used in pre_save and post_save
signal handlers to identify field changes on model save.

Note

Due to the implementation of FieldTracker, post_save signal
handlers relying on field tracker methods should only be registered after
model creation.

 Copyright 2013, Carl Meyer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-model-utils 2.2 documentation

Index

 Copyright 2013, Carl Meyer.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

search.html

 Navigation

 		
 index

 		django-model-utils 2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Carl Meyer.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

