

django-model-utils

Django model mixins and utilities.

Contents

	Setup
	Installation

	Dependencies

	Fields
	StatusField

	MonitorField

	SplitField
	Accessing a SplitField on a model

	Customized excerpting

	UUIDField

	UrlsafeTokenField

	Models
	TimeFramedModel

	TimeStampedModel

	StatusModel

	SoftDeletableModel

	UUIDModel

	SaveSignalHandlingModel

	Model Managers
	InheritanceManager

	JoinManager

	QueryManager

	SoftDeletableManager

	Mixins

	Miscellaneous Utilities
	Choices

	Field Tracker
	Accessing a field tracker

	Tracking specific fields

	Tracking Foreign Key Fields

	Checking changes using signals

	FieldTracker implementation details

	When FieldTracker resets fields state

	Changelog
	4.3.1 (2022-11-15)

	4.3.0

	4.2.0 (2021-10-11)

	4.1.1 (2020-12-01)

	4.1.0 (2020-11-29)

	4.0.0 (2019-12-11)

	3.2.0 (2019.06.21)

	3.1.2 (2018.05.09)

	3.1.1 (2017.12.17)

	3.1.0 (2017.12.11)

	3.0.0 (2017.04.13)

	2.6.1 (2017.01.11)

	2.6 (2016.09.19)

	2.5.2 (2016.08.09)

	2.5.1 (2016.08.03)

	2.5 (2016.04.18)

	2.4 (2015.12.03)

	2.3.1 (2015-07-20)

	2.3 (2015.07.17)

	2.2 (2014.07.31)

	2.1.1 (2014.07.28)

	2.1.0 (2014.07.25)

	2.0.3 (2014.03.19)

	2.0.2 (2014.02.19)

	2.0.1 (2014.02.11)

	2.0 (2014.01.06)

	1.5.0 (2013.08.29)

	1.4.0 (2013.06.03)

	1.3.1 (2013.04.11)

	1.3.0 (2013.03.27)

	1.2.0 (2013.01.27)

	1.1.0 (2012.04.13)

	1.0.0 (2011.06.16)

	0.6.0 (2011.02.18)

	0.5.0 (2010.09.24)

	0.4.0 (2010.03.16)

	0.3.0

Contributing

Please file bugs and send pull requests to the GitHub repository [https://github.com/jazzband/django-model-utils/] and issue
tracker [https://github.com/jazzband/django-model-utils/issues].

Indices and tables

	Index

	Module Index

	Search Page

Setup

Installation

Install from PyPI with pip:

pip install django-model-utils

To use django-model-utils in your Django project, just import and
use the utility classes described in this documentation; there is no need to
modify your INSTALLED_APPS setting.

Dependencies

django-model-utils supports Django [http://www.djangoproject.com/] 3.2+ (latest bugfix
release in each series only) on Python 3.7+.

Fields

StatusField

A simple convenience for giving a model a set of “states.”
StatusField is a CharField subclass that expects to find a
class attribute called STATUS on its model or you can pass
choices_name to use a different attribute name, and uses that as
its choices. Also sets a default max_length of 100, and sets
its default value to the first item in the STATUS choices:

from model_utils.fields import StatusField
from model_utils import Choices

class Article(models.Model):
 STATUS = Choices('draft', 'published')
 # ...
 status = StatusField()

(The STATUS class attribute does not have to be a Choices
instance, it can be an ordinary list of two-tuples).

Using a different name for the model’s choices class attribute

from model_utils.fields import StatusField
from model_utils import Choices

class Article(models.Model):
 ANOTHER_CHOICES = Choices('draft', 'published')
 # ...
 another_field = StatusField(choices_name='ANOTHER_CHOICES')

StatusField does not set db_index=True automatically; if you
expect to frequently filter on your status field (and it will have
enough selectivity to make an index worthwhile) you may want to add this
yourself.

MonitorField

A DateTimeField subclass that monitors another field on the model,
and updates itself to the current date-time whenever the monitored
field changes:

from model_utils.fields import MonitorField, StatusField

class Article(models.Model):
 STATUS = Choices('draft', 'published')

 status = StatusField()
 status_changed = MonitorField(monitor='status')

(A MonitorField can monitor any type of field for changes, not only a
StatusField.)

If a list is passed to the when parameter, the field will only
update when it matches one of the specified values:

from model_utils.fields import MonitorField, StatusField

class Article(models.Model):
 STATUS = Choices('draft', 'published')

 status = StatusField()
 published_at = MonitorField(monitor='status', when=['published'])

SplitField

A TextField subclass that automatically pulls an excerpt out of
its content (based on a “split here” marker or a default number of
initial paragraphs) and stores both its content and excerpt values in
the database.

A SplitField is easy to add to any model definition:

from django.db import models
from model_utils.fields import SplitField

class Article(models.Model):
 title = models.CharField(max_length=100)
 body = SplitField()

SplitField automatically creates an extra non-editable field
_body_excerpt to store the excerpt. This field doesn’t need to be
accessed directly; see below.

Accessing a SplitField on a model

When accessing an attribute of a model that was declared as a
SplitField, a SplitText object is returned. The SplitText
object has three attributes:

	content:

	The full field contents.

	excerpt:

	The excerpt of content (read-only).

	has_more:

	True if the excerpt and content are different, False otherwise.

This object also has a __unicode__ method that returns the full
content, allowing SplitField attributes to appear in templates
without having to access content directly.

Assuming the Article model above:

>>> a = Article.objects.all()[0]
>>> a.body.content
u'some text\n\n<!-- split -->\n\nmore text'
>>> a.body.excerpt
u'some text\n'
>>> unicode(a.body)
u'some text\n\n<!-- split -->\n\nmore text'

Assignment to a.body is equivalent to assignment to
a.body.content.

Note

a.body.excerpt is only updated when a.save() is called

Customized excerpting

By default, SplitField looks for the marker <!-- split -->
alone on a line and takes everything before that marker as the
excerpt. This marker can be customized by setting the SPLIT_MARKER
setting.

If no marker is found in the content, the first two paragraphs (where
paragraphs are blocks of text separated by a blank line) are taken to
be the excerpt. This number can be customized by setting the
SPLIT_DEFAULT_PARAGRAPHS setting.

UUIDField

A UUIDField subclass that provides an UUID field. You can
add this field to any model definition.

With the param primary_key you can set if this field is the
primary key for the model, default is True.

Param version is an integer that set default UUID version.
Versions 1,3,4 and 5 are supported, default is 4.

If editable is set to false the field will not be displayed in the admin
or any other ModelForm, default is False.

from django.db import models
from model_utils.fields import UUIDField

class MyAppModel(models.Model):
 uuid = UUIDField(primary_key=True, version=4, editable=False)

UrlsafeTokenField

A CharField subclass that provides random token generating using
python’s secrets.token_urlsafe as default value.

If editable is set to false the field will not be displayed in the admin
or any other ModelForm, default is False.

max_length specifies the maximum length of the token. The default value is 128.

from django.db import models
from model_utils.fields import UrlsafeTokenField

class MyAppModel(models.Model):
 uuid = UrlsafeTokenField(editable=False, max_length=128)

You can provide your custom token generator using the factory argument.
factory should be callable. It will raise TypeError if it is not callable.
factory is called with max_length argument to generate the token, and should
return a string of specified maximum length.

import uuid

from django.db import models
from model_utils.fields import UrlsafeTokenField

def _token_factory(max_length):
 return uuid.uuid4().hex

class MyAppModel(models.Model):
 uuid = UrlsafeTokenField(max_length=32, factory=_token_factory)

Models

TimeFramedModel

An abstract base class for any model that expresses a time-range. Adds
start and end nullable DateTimeFields, and provides a new
timeframed manager on the subclass whose queryset pre-filters results
to only include those which have a start which is not in the future,
and an end which is not in the past. If either start or end is
null, the manager will include it.

from model_utils.models import TimeFramedModel
from datetime import datetime, timedelta
class Post(TimeFramedModel):
 pass

p = Post()
p.start = datetime.utcnow() - timedelta(days=1)
p.end = datetime.utcnow() + timedelta(days=7)
p.save()

this query will return the above Post instance:
Post.timeframed.all()

p.start = None
p.end = None
p.save()

this query will also return the above Post instance, because
the `start` and/or `end` are NULL.
Post.timeframed.all()

p.start = datetime.utcnow() + timedelta(days=7)
p.save()

this query will NOT return our Post instance, because
the start date is in the future.
Post.timeframed.all()

TimeStampedModel

This abstract base class just provides self-updating created and
modified fields on any model that inherits from it.

StatusModel

Pulls together StatusField, MonitorField and QueryManager
into an abstract base class for any model with a “status.”

Just provide a STATUS class-attribute (a Choices object or a
list of two-tuples), and your model will have a status field with
those choices, a status_changed field containing the date-time the
status was last changed, and a manager for each status that
returns objects with that status only:

from model_utils.models import StatusModel
from model_utils import Choices

class Article(StatusModel):
 STATUS = Choices('draft', 'published')

...

a = Article()
a.status = Article.STATUS.published

this save will update a.status_changed
a.save()

this query will only return published articles:
Article.published.all()

SoftDeletableModel

This abstract base class just provides a field is_removed which is
set to True instead of removing the instance. Entities returned in
manager available_objects are limited to not-deleted instances.

Note that relying on the default objects manager to filter out not-deleted
instances is deprecated. objects will include deleted objects in a future
release.

UUIDModel

This abstract base class provides id field on any model that inherits from it
which will be the primary key.

If you dont want to set id as primary key or change the field name, you can override it
with our UUIDField [https://github.com/jazzband/django-model-utils/blob/master/docs/fields.rst#uuidfield]

Also you can override the default uuid version. Versions 1,3,4 and 5 are now supported.

from model_utils.models import UUIDModel

class MyAppModel(UUIDModel):
 pass

SaveSignalHandlingModel

An abstract base class model to pass a parameter signals_to_disable
to save method in order to disable signals

from model_utils.models import SaveSignalHandlingModel

class SaveSignalTestModel(SaveSignalHandlingModel):
 name = models.CharField(max_length=20)

obj = SaveSignalTestModel(name='Test')
Note: If you use `Model.objects.create`, the signals can't be disabled
obj.save(signals_to_disable=['pre_save'] # disable `pre_save` signal

Model Managers

InheritanceManager

This manager (contributed by Jeff Elmore [http://jeffelmore.org/2010/11/11/automatic-downcasting-of-inherited-models-in-django/]) should be attached to a base model
class in a model-inheritance tree. It allows queries on that base model to
return heterogeneous results of the actual proper subtypes, without any
additional queries.

For instance, if you have a Place model with subclasses Restaurant and
Bar, you may want to query all Places:

nearby_places = Place.objects.filter(location='here')

But when you iterate over nearby_places, you’ll get only Place
instances back, even for objects that are “really” Restaurant or Bar.
If you attach an InheritanceManager to Place, you can just call the
select_subclasses() method on the InheritanceManager or any
QuerySet from it, and the resulting objects will be instances of
Restaurant or Bar:

from model_utils.managers import InheritanceManager

class Place(models.Model):
 # ...
 objects = InheritanceManager()

class Restaurant(Place):
 # ...

class Bar(Place):
 # ...

nearby_places = Place.objects.filter(location='here').select_subclasses()
for place in nearby_places:
 # "place" will automatically be an instance of Place, Restaurant, or Bar

The database query performed will have an extra join for each subclass; if you
want to reduce the number of joins and you only need particular subclasses to
be returned as their actual type, you can pass subclass names to
select_subclasses(), much like the built-in select_related() method:

nearby_places = Place.objects.select_subclasses("restaurant")
restaurants will be Restaurant instances, bars will still be Place instances

nearby_places = Place.objects.select_subclasses("restaurant", "bar")
all Places will be converted to Restaurant and Bar instances.

It is also possible to use the subclasses themselves as arguments to
select_subclasses, leaving it to calculate the relationship for you:

nearby_places = Place.objects.select_subclasses(Restaurant)
restaurants will be Restaurant instances, bars will still be Place instances

nearby_places = Place.objects.select_subclasses(Restaurant, Bar)
all Places will be converted to Restaurant and Bar instances.

It is even possible to mix and match the two:

nearby_places = Place.objects.select_subclasses(Restaurant, "bar")
all Places will be converted to Restaurant and Bar instances.

InheritanceManager also provides a subclass-fetching alternative to the
get() method:

place = Place.objects.get_subclass(id=some_id)
"place" will automatically be an instance of Place, Restaurant, or Bar

If you don’t explicitly call select_subclasses() or get_subclass(),
an InheritanceManager behaves identically to a normal Manager; so
it’s safe to use as your default manager for the model.

JoinManager

The JoinManager will create a temporary table of your current queryset
and join that temporary table with the model of your current queryset. This can
be advantageous if you have to page through your entire DB and using django’s
slice mechanism to do that. LIMIT .. OFFSET .. becomes slower the bigger
offset you use.

sliced_qs = Place.objects.all()[2000:2010]
qs = sliced_qs.join()
qs contains 10 objects, and there will be a much smaller performance hit
for paging through all of first 2000 objects.

Alternatively, you can give it a queryset and the manager will create a temporary
table and join that to your current queryset. This can work as a more performant
alternative to using django’s __in as described in the following
(StackExchange answer [https://dba.stackexchange.com/questions/91247/optimizing-a-postgres-query-with-a-large-in]).

big_qs = Restaurant.objects.filter(menu='vegetarian')
qs = Country.objects.filter(country_code='SE').join(big_qs)

QueryManager

Many custom model managers do nothing more than return a QuerySet that
is filtered in some way. QueryManager allows you to express this
pattern with a minimum of boilerplate:

from django.db import models
from model_utils.managers import QueryManager

class Post(models.Model):
 ...
 published = models.BooleanField()
 pub_date = models.DateField()
 ...

 objects = models.Manager()
 public = QueryManager(published=True).order_by('-pub_date')

The kwargs passed to QueryManager will be passed as-is to the
QuerySet.filter() method. You can also pass a Q object to
QueryManager to express more complex conditions. Note that you can
set the ordering of the QuerySet returned by the QueryManager
by chaining a call to .order_by() on the QueryManager (this is
not required).

SoftDeletableManager

Returns only model instances that have the is_removed field set
to False. Uses SoftDeletableQuerySet, which ensures model instances
won’t be removed in bulk, but they will be marked as removed instead.

Mixins

Each of the above manager classes has a corresponding mixin that can be used to
add functionality to any manager.

Note that any manager class using InheritanceManagerMixin must return a
QuerySet class using InheritanceQuerySetMixin from its get_queryset
method.

Miscellaneous Utilities

Choices

Note

Django 3.0 adds enumeration types [https://docs.djangoproject.com/en/3.0/releases/3.0/#enumerations-for-model-field-choices].
These provide most of the same features as Choices.

Choices provides some conveniences for setting choices on a Django model field:

from model_utils import Choices

class Article(models.Model):
 STATUS = Choices('draft', 'published')
 status = models.CharField(choices=STATUS, default=STATUS.draft, max_length=20)

A Choices object is initialized with any number of choices. In the
simplest case, each choice is a string; that string will be used both
as the database representation of the choice, and the human-readable
representation. Note that you can access options as attributes on the
Choices object: STATUS.draft.

But you may want your human-readable versions translated, in which
case you need to separate the human-readable version from the DB
representation. In this case you can provide choices as two-tuples:

from model_utils import Choices

class Article(models.Model):
 STATUS = Choices(('draft', _('draft')), ('published', _('published')))
 status = models.CharField(choices=STATUS, default=STATUS.draft, max_length=20)

But what if your database representation of choices is constrained in
a way that would hinder readability of your code? For instance, you
may need to use an IntegerField rather than a CharField, or
you may want the database to order the values in your field in some
specific way. In this case, you can provide your choices as triples,
where the first element is the database representation, the second is
a valid Python identifier you will use in your code as a constant, and
the third is the human-readable version:

from model_utils import Choices

class Article(models.Model):
 STATUS = Choices((0, 'draft', _('draft')), (1, 'published', _('published')))
 status = models.IntegerField(choices=STATUS, default=STATUS.draft)

You can index into a Choices instance to translate a database
representation to its display name:

status_display = Article.STATUS[article.status]

Option groups can also be used with Choices; in that case each
argument is a tuple consisting of the option group name and a list of
options, where each option in the list is either a string, a two-tuple,
or a triple as outlined above. For example:

from model_utils import Choices

class Article(models.Model):
STATUS = Choices(('Visible', ['new', 'archived']), ('Invisible', ['draft', 'deleted']))

Choices can be concatenated with the + operator, both to other Choices
instances and other iterable objects that could be converted into Choices:

from model_utils import Choices

GENERIC_CHOICES = Choices((0, 'draft', _('draft')), (1, 'published', _('published')))

class Article(models.Model):
 STATUS = GENERIC_CHOICES + [(2, 'featured', _('featured'))]
 status = models.IntegerField(choices=STATUS, default=STATUS.draft)

Should you wish to provide a subset of choices for a field, for
instance, you have a form class to set some model instance to a failed
state, and only wish to show the user the failed outcomes from which to
select, you can use the subset method:

from model_utils import Choices

OUTCOMES = Choices(
 (0, 'success', _('Successful')),
 (1, 'user_cancelled', _('Cancelled by the user')),
 (2, 'admin_cancelled', _('Cancelled by an admin')),
)
FAILED_OUTCOMES = OUTCOMES.subset('user_cancelled', 'admin_cancelled')

The choices attribute on the model field can then be set to
FAILED_OUTCOMES, thus allowing the subset to be defined in close
proximity to the definition of all the choices, and reused elsewhere as
required.

Field Tracker

A FieldTracker can be added to a model to track changes in model fields. A
FieldTracker allows querying for field changes since a model instance was
last saved. An example of applying FieldTracker to a model:

from django.db import models
from model_utils import FieldTracker

class Post(models.Model):
 title = models.CharField(max_length=100)
 body = models.TextField()

 tracker = FieldTracker()

Note

django-model-utils 1.3.0 introduced the ModelTracker object for
tracking changes to model field values. Unfortunately ModelTracker
suffered from some serious flaws in its handling of ForeignKey fields,
potentially resulting in many extra database queries if a ForeignKey
field was tracked. In order to avoid breaking API backwards-compatibility,
ModelTracker retains the previous behavior but is deprecated, and
FieldTracker has been introduced to provide better ForeignKey
handling. All uses of ModelTracker should be replaced by
FieldTracker.

Summary of differences between ModelTracker and FieldTracker:

	The previous value returned for a tracked ForeignKey field will now
be the raw ID rather than the full object (avoiding extra database
queries). (GH-43)

	The changed() method no longer returns the empty dictionary for all
unsaved instances; rather, None is considered to be the initial value
of all fields if the model has never been saved, thus changed() on an
unsaved instance will return a dictionary containing all fields whose
current value is not None.

	The has_changed() method no longer crashes after an object’s first
save. (GH-53).

Accessing a field tracker

There are multiple methods available for checking for changes in model fields.

previous

Returns the value of the given field during the last save:

>>> a = Post.objects.create(title='First Post')
>>> a.title = 'Welcome'
>>> a.tracker.previous('title')
u'First Post'

Returns None when the model instance isn’t saved yet.

If a field is deferred [https://docs.djangoproject.com/en/2.0/ref/models/querysets/#defer], calling previous() will load the previous value from the database.

has_changed

Returns True if the given field has changed since the last save. The has_changed method expects a single field:

>>> a = Post.objects.create(title='First Post')
>>> a.title = 'Welcome'
>>> a.tracker.has_changed('title')
True
>>> a.tracker.has_changed('body')
False

The has_changed method relies on previous to determine whether a
field’s values has changed.

If a field is deferred [https://docs.djangoproject.com/en/2.0/ref/models/querysets/#defer] and has been assigned locally, calling has_changed()
will load the previous value from the database to perform the comparison.

changed

Returns a dictionary of all fields that have been changed since the last save
and the values of the fields during the last save:

>>> a = Post.objects.create(title='First Post')
>>> a.title = 'Welcome'
>>> a.body = 'First post!'
>>> a.tracker.changed()
{'title': 'First Post', 'body': ''}

The changed method relies on has_changed to determine which fields
have changed.

Tracking specific fields

A fields parameter can be given to FieldTracker to limit tracking to
specific fields:

from django.db import models
from model_utils import FieldTracker

class Post(models.Model):
 title = models.CharField(max_length=100)
 body = models.TextField()

 title_tracker = FieldTracker(fields=['title'])

An example using the model specified above:

>>> a = Post.objects.create(title='First Post')
>>> a.body = 'First post!'
>>> a.title_tracker.changed()
{'title': None}

Tracking Foreign Key Fields

It should be noted that a generic FieldTracker tracks Foreign Keys by db_column name, rather than model field name, and would be accessed as follows:

from django.db import models
from model_utils import FieldTracker

class Parent(models.Model):
 name = models.CharField(max_length=64)

class Child(models.Model):
 name = models.CharField(max_length=64)
 parent = models.ForeignKey(Parent)
 tracker = FieldTracker()

>>> p = Parent.objects.create(name='P')
>>> c = Child.objects.create(name='C', parent=p)
>>> c.tracker.has_changed('parent_id')

To find the db_column names of your model (using the above example):

>>> for field in Child._meta.fields:
 field.get_attname_column()
('id', 'id')
('name', 'name')
('parent_id', 'parent_id')

The model field name may be used when tracking with a specific tracker:

specific_tracker = FieldTracker(fields=['parent'])

But according to issue #195 this is not recommended for accessing Foreign Key Fields.

Checking changes using signals

The field tracker methods may also be used in pre_save and post_save
signal handlers to identify field changes on model save.

Note

Due to the implementation of FieldTracker, post_save signal
handlers relying on field tracker methods should only be registered after
model creation.

FieldTracker implementation details

from django.db import models
from model_utils import FieldTracker, TimeStampedModel

class MyModel(TimeStampedModel):
 name = models.CharField(max_length=64)
 tracker = FieldTracker()

 def save(self, *args, **kwargs):
 """ Automatically add "modified" to update_fields."""
 update_fields = kwargs.get('update_fields')
 if update_fields is not None:
 kwargs['update_fields'] = set(update_fields) | {'modified'}
 super().save(*args, **kwargs)

[...]

instance = MyModel.objects.first()
instance.name = 'new'
instance.save(update_fields={'name'})

This is how FieldTracker tracks field changes on instance.save call.

	In class_prepared handler FieldTracker patches save_base and
refresh_from_db methods to reset initial state for tracked fields.

	In post_init handler FieldTracker saves initial values for tracked
fields.

	MyModel.save changes update_fields in order to store auto updated
modified timestamp. Complete list of saved fields is now known.

	Model.save does nothing interesting except calling save_base.

	Decorated save_base() method calls super().save_base and all fields
that have values different to initial are considered as changed.

	Model.save_base sends pre_save signal, saves instance to database and
sends post_save signal. All pre_save/post_save receivers can query
instance.tracker for a set of changed fields etc.

	After Model.save_base return FieldTracker resets initial state for
updated fields (if no update_fields passed - whole initial state is
reset).

	instance.refresh_from_db() call causes initial state reset like for
save_base().

When FieldTracker resets fields state

By the definition:

Note

	Field value is changed if it differs from current database value.

	Field value was changed if value has changed in database and field state didn’t reset.

instance = Tracked.objects.get(pk=1)
name not changed
instance.name += '_changed'
name is changed
instance.save()
name is not changed again

Current implementation resets fields state after post_save signals emitting. This is convenient for “outer” code
like in example above, but does not help when model save method is overridden.

class MyModel(models.Model)
 name = models.CharField(max_length=64)
 tracker = FieldsTracker()

 def save(self): # erroneous implementation
 self.name = self.name.replace(' ', '_')
 name_changed = self.tracker.has_changed('name')
 super().save()
 # changed state has been reset here, so we need to store previous state somewhere else
 if name_changed:
 do_something_about_it()

FieldTracker provides a context manager interface to postpone fields state reset in complicate situations.

	Fields state resets after exiting from outer-most context

	By default, all fields are reset, but field list can be provided

	Fields are counted separately depending on field list passed to context managers

	Tracker can be used as decorator

	Different instances have their own context state

	Different trackers in same instance have separate context state

class MyModel(models.Model)
 name = models.CharField(max_length=64)
 tracker = FieldTracker()

 def save(self): # correct implementation
 self.name = self.name.replace(' ', '_')

 with self.tracker:
 super().save()
 # changed state reset is postponed
 if self.tracker.has_changed('name'):
 do_something_about_it()

 # Decorator example
 @tracker
 def save(self): ...

 # Restrict a set of fields to reset here
 @tracker(fields=('name'))
 def save(self): ...

 # Context manager with field list
 def save(self):
 with self.tracker('name'):
 ...

Changelog

4.3.1 (2022-11-15)

	Confirm support for Django 4.0

	Add Spanish translation

	Add French translation

	Drop Django 1.7 workaround from select_subclasses()

	Drop support for Django < 3.2

	Drop support for Python 3.6

	Confirm support for Django 4.1

4.3.0

	Never released due to packaging issues.

4.2.0 (2021-10-11)

	Add support for Django 3.2

	Drop support for Django 3.0

	Add support for Python 3.10

	Added urlsafe token field.

	Introduce context manager for FieldTracker state reset (GH-#491)

	Fix performance regression of FieldTracker on FileField subclasses on Django 3.1+
(GH-#498)

4.1.1 (2020-12-01)

	Applied isort to codebase (Refs GH-#402)

	Fix TypeError in save when model inherits from both TimeStampModel
and StatusModel. (Fixes GH-465)

4.1.0 (2020-11-29)

Breaking changes:

	FieldTracker now marks fields as not changed after refresh_from_db
respecting fields argument (GH-#404)

	FieldTracker now respects update_fields changed in overridden save()
method (GH-#404)

	FieldTracker now resets states after pre_save() and not anymore save()
signals, possibly altering the behaviour of overridden save()
methods (GH-#404)

Other changes:

	Update InheritanceQuerySetMixin to avoid querying too much tables

	TimeStampedModel now automatically adds ‘modified’ field as an update_fields
parameter even if it is forgotten while using save()

	Replace ugettext_lazy with gettext_lazy to satisfy Django deprecation warning

	Add available_objects manager to SoftDeletableModel and add deprecation
warning to objects manager.

	StatusModel now automatically adds ‘status_changed’ field during save as an
update_fieldsparameter when ‘status’ is present in it to make sure it is not
forgotten.

	Update test requirements

	Move tests to GitHub Actions: https://github.com/jazzband/django-model-utils/actions

	Drop support for Django 2.1

	Add support for Python 3.9

	Add support for Django 3.1

4.0.0 (2019-12-11)

	Added Choices.subset.

	Remove hacks for previously supported Django versions. (Fixes GH-390)

	Dropped support for Python 2.7. (Fixes GH-393)

	Dropped usage of six

	Drop support for Django 1.11

	Add support for Python 3.8

	Add support for Django 3.0

3.2.0 (2019.06.21)

	Catch AttributeError for deferred abstract fields, fixes GH-331.

	Update documentation to explain usage of timeframed model manager, fixes GH-118

	Honor OneToOneField.parent_link=False.

	Fix handling of deferred attributes on Django 1.10+, fixes GH-278

	Fix FieldTracker.has_changed() and FieldTracker.previous() to return
correct responses for deferred fields.

	Add Simplified Chinese translations.

	Update AutoLastModifiedField so that at instance creation it will
always be set equal to created to make querying easier. Fixes GH-254

	Support reversed for all kinds of Choices objects, fixes GH-309

	Fix Model instance non picklable GH-330

	Fix patched save in FieldTracker

	Upgrades test requirements (pytest, pytest-django, pytest-cov) and
skips tox test with Python 3.5 and Django (trunk)

	Add UUIDModel and UUIDField support.

3.1.2 (2018.05.09)

	Update InheritanceIterable to inherit from
ModelIterable instead of BaseIterable, fixes GH-277.

	Add all_objects Manager for ‘SoftDeletableModel’ to include soft
deleted objects on queries as per issue GH-255

3.1.1 (2017.12.17)

	Update classifiers and README via GH-306, fixes GH-305

3.1.0 (2017.12.11)

	Support for Django 2.0 via GH-298, fixes GH-297

	Remove old travis script via GH-300

	Fix codecov and switch to py.test #301

3.0.0 (2017.04.13)

	Drop support for Python 2.6.

	Drop support for Django 1.4, 1.5, 1.6, 1.7.

	Exclude tests from the distribution, fixes GH-258.

	Add support for Django 1.11 GH-269

	Add a new model to disable pre_save/post_save signals

2.6.1 (2017.01.11)

	Fix infinite recursion with multiple MonitorField and defer() or only()
on Django 1.10+. Thanks Romain Garrigues. Merge of GH-242, fixes GH-241.

	Fix InheritanceManager and SoftDeletableManager to respect
self._queryset_class instead of hardcoding the queryset class. Merge of
GH-250, fixes GH-249.

	Add mixins for SoftDeletableQuerySet and SoftDeletableManager, as stated
in the the documentation.

	Fix SoftDeletableModel.delete() to use the correct database connection.
Merge of GH-239.

	Added boolean keyword argument soft to SoftDeletableModel.delete() that
revert to default behavior when set to False. Merge of GH-240.

	Enforced default manager in StatusModel to avoid manager order issues when
using abstract models that redefine objects manager. Merge of GH-253, fixes
GH-251.

2.6 (2016.09.19)

	Added SoftDeletableModel abstract class, its manageer
SoftDeletableManager and queryset SoftDeletableQuerySet.

	Fix issue with field tracker and deferred FileField for Django 1.10.

2.5.2 (2016.08.09)

	Include runtests.py in sdist.

2.5.1 (2016.08.03)

	Fix InheritanceQuerySet raising an AttributeError exception
under Django 1.9.

	Django 1.10 support regressed with changes between pre-alpha and final
release; 1.10 currently not supported.

2.5 (2016.04.18)

	Drop support for Python 3.2.

	Add support for Django 1.10 pre-alpha.

	Track foreign keys on parent models properly when a tracker
is defined on a child model. Fixes GH-214.

2.4 (2015.12.03)

	Remove PassThroughManager. Use Django’s built-in QuerySet.as_manager()
and/or Manager.from_queryset() utilities instead.

	Add support for Django 1.9.

2.3.1 (2015-07-20)

	Remove all translation-related automation in setup.py. Fixes GH-178 and
GH-179. Thanks Joe Weiss, Matt Molyneaux, and others for the reports.

2.3 (2015.07.17)

	Keep track of deferred fields on model instance instead of on
FieldInstanceTracker instance. Fixes accessing deferred fields for multiple
instances of a model from the same queryset. Thanks Bram Boogaard. Merge of
GH-151.

	Fix Django 1.7 migrations compatibility for SplitField. Thanks ad-m. Merge of
GH-157; fixes GH-156.

	Add German translations.

	Django 1.8 compatibility.

2.2 (2014.07.31)

	Revert GH-130, restoring ability to access FieldTracker changes in
overridden save methods or post_save handlers. This reopens GH-83
(inability to pickle models with FieldTracker) until a solution can be
found that doesn’t break behavior otherwise. Thanks Brian May for the
report. Fixes GH-143.

2.1.1 (2014.07.28)

	ASCII-fold all non-ASCII characters in changelog; again. Argh. Apologies to
those whose names are mangled by this change. It seems that distutils makes
it impossible to handle non-ASCII content reliably under Python 3 in a
setup.py long_description, when the system encoding may be ASCII. Thanks
Brian May for the report. Fixes GH-141.

2.1.0 (2014.07.25)

	Add support for Django’s built-in migrations to MonitorField and
StatusField.

	PassThroughManager now has support for seeing exposed methods via
dir, allowing IPython [http://ipython.org/] tab completion to be useful. Merge of GH-104,
fixes GH-55.

	Add pickle support for models using FieldTracker. Thanks Ondrej Slintak
for the report. Thanks Matthew Schinckel for the fix. Merge of GH-130,
fixes GH-83.

2.0.3 (2014.03.19)

	Fix get_query_set vs get_queryset in PassThroughManager for
Django <1.6. Fixes issues with related managers not filtering by relation
properly. Thanks whop, Bojan Mihelac, Daniel Shapiro, and Matthew Schinckel
for the report; Matthew for the fix. Merge of GH-121.

	Fix FieldTracker with deferred model attributes. Thanks Michael van
Tellingen. Merge of GH-115.

	Fix InheritanceManager with self-referential FK; avoid infinite
recursion. Thanks rsenkbeil. Merge of GH-114.

2.0.2 (2014.02.19)

	ASCII-fold all non-ASCII characters in changelog. Apologies to those whose
names are mangled by this change. It seems that distutils makes it impossible
to handle non-ASCII content reliably under Python 3 in a setup.py
long_description, when the system encoding may be ASCII. Thanks Simone Dalla
for the report. Fixes GH-113.

2.0.1 (2014.02.11)

	Fix dependency to be on “Django” rather than “django”, which plays better
with static PyPI mirrors. Thanks Travis Swicegood.

	Fix issue with attempt to access __slots__ when copying
PassThroughManager. Thanks Patryk Zawadzki. Merge of GH-105.

	Improve InheritanceManager so any attributes added by using extra(select)
will be propagated onto children. Thanks Curtis Maloney. Merge of GH-101,
fixes GH-34.

	Added InheritanceManagerMixin, InheritanceQuerySetMixin,
PassThroughManagerMixin, and QueryManagerMixin to allow composing
their functionality with other custom manager/queryset subclasses (e.g. those
in GeoDjango). Thanks Douglas Meehan!

2.0 (2014.01.06)

	BACKWARDS-INCOMPATIBLE: Indexing into a Choices instance now translates
database representations to human-readable choice names, rather than simply
indexing into an array of choice tuples. (Indexing into Choices was
previously not documented.) If you have code that is relying on indexing or
slicing Choices, the simplest workaround is to change e.g. STATUS[1:]
to list(STATUS)[1:].

	Fixed bug with checking for field name conflicts for added query managers on
StatusModel.

	Can pass choices_name to StatusField to use a different name for
choices class attribute. STATUS is used by default.

	Can pass model subclasses, rather than strings, into
select_subclasses(). Thanks Keryn Knight. Merge of GH-79.

	Deepcopying a Choices instance no longer fails with infinite recursion in
getattr. Thanks Leden. Merge of GH-75.

	get_subclass() method is now available on both managers and
querysets. Thanks Travis Swicegood. Merge of GH-82.

	Fix bug in InheritanceManager with grandchild classes on Django 1.6+;
select_subclasses(‘child’, ‘child__grandchild’) would only ever get to the
child class. Thanks Keryn Knight for report and proposed fix.

	MonitorField now accepts a ‘when’ parameter. It will update only when the field
changes to one of the values specified.

1.5.0 (2013.08.29)

	Choices now accepts option-groupings. Fixes GH-14.

	Choices can now be added to other Choices or to any iterable, and can be
compared for equality with itself. Thanks Tony Aldridge. (Merge of GH-76.)

	Choices now __contains__ its Python identifier values. Thanks Keryn
Knight. (Merge of GH-69).

	Fixed a bug causing KeyError when saving with the parameter
update_fields in which there are untracked fields. Thanks Mikhail
Silonov. (Merge of GH-70, fixes GH-71).

	Fixed FieldTracker usage on inherited models. Fixes GH-57.

	Added mutable field support to FieldTracker (Merge of GH-73, fixes GH-74)

1.4.0 (2013.06.03)

	Introduced FieldTracker as replacement for ModelTracker, which is now
deprecated.

	PassThroughManager.for_queryset_class() no longer ignores superclass
get_query_set. Thanks Andy Freeland.

	Fixed InheritanceManager bug with grandchildren in Django 1.6. Thanks
CrazyCasta.

	Fixed lack of get_FOO_display method for StatusField. Fixes GH-41.

1.3.1 (2013.04.11)

	Added explicit default to BooleanField in tests, for Django trunk
compatibility.

	Fixed intermittent StatusField bug. Fixes GH-29.

	Added Python 3 support.

	Dropped support for Django 1.2 and 1.3. Django 1.4.2+ required.

1.3.0 (2013.03.27)

	Allow specifying default value for a StatusField. Thanks Felipe
Prenholato.

	Fix calling create() on a RelatedManager that subclasses a dynamic
PassThroughManager. Thanks SeiryuZ for the report. Fixes GH-24.

	Add workaround for https://code.djangoproject.com/ticket/16855 in
InheritanceQuerySet to avoid overriding prior calls to
select_related(). Thanks ivirabyan.

	Added support for arbitrary levels of model inheritance in
InheritanceManager. Thanks ivirabyan. (This feature only works in Django
1.6+ due to https://code.djangoproject.com/ticket/16572).

	Added ModelTracker for tracking field changes between model saves. Thanks
Trey Hunner.

1.2.0 (2013.01.27)

	Moved primary development from Bitbucket [https://bitbucket.org/carljm/django-model-utils/overview] to GitHub [https://github.com/carljm/django-model-utils/]. Bitbucket mirror
will continue to receive updates; Bitbucket issue tracker will be closed once
all issues tracked in it are resolved.

	Removed deprecated ChoiceEnum, InheritanceCastModel,
InheritanceCastManager, and manager_from.

	Fixed pickling of PassThroughManager. Thanks Rinat Shigapov.

	Set use_for_related_fields = True on QueryManager.

	Added __len__ method to Choices. Thanks Ryan Kaskel and James Oakley.

	Fixed InheritanceQuerySet on Django 1.5. Thanks Javier Garcia Sogo.

1.1.0 (2012.04.13)

	Updated AutoCreatedField, AutoLastModifiedField, MonitorField, and
TimeFramedModel to use django.utils.timezone.now on Django 1.4.
Thanks Donald Stufft.

	Fixed annotation of InheritanceQuerysets. Thanks Jeff Elmore and Facundo
Gaich.

	Dropped support for Python 2.5 and Django 1.1. Both are no longer supported
even for security fixes, and should not be used.

	Added PassThroughManager.for_queryset_class(), which fixes use of
PassThroughManager with related fields. Thanks Ryan Kaskel for report and
fix.

	Added InheritanceManager.get_subclass(). Thanks smacker.

1.0.0 (2011.06.16)

	Fixed using SplitField on an abstract base model.

	Fixed issue #8, adding use_for_related_fields = True to
InheritanceManager.

	Added PassThroughManager. Thanks Paul McLanahan.

	Added pending-deprecation warnings for InheritanceCastModel,
manager_from, and Django 1.1 support. Removed documentation for the
deprecated utilities. Bumped ChoiceEnum from pending-deprecation to
deprecation.

	Fixed issue #6, bug with InheritanceManager and descriptor fields (e.g.
FileField). Thanks zyegfryed for the fix and sayane for tests.

0.6.0 (2011.02.18)

	updated SplitField to define get_prep_value rather than get_db_prep_value.
This avoids deprecation warnings on Django trunk/1.3, but makes SplitField
incompatible with Django versions prior to 1.2.

	added InheritanceManager, a better approach to selecting subclass instances
for Django 1.2+. Thanks Jeff Elmore.

	added InheritanceCastManager and InheritanceCastQuerySet, to allow bulk
casting of a queryset to child types. Thanks Gregor Muellegger.

0.5.0 (2010.09.24)

	added manager_from (thanks George Sakkis)

	added StatusField, MonitorField, TimeFramedModel, and StatusModel
(thanks Jannis Leidel)

	deprecated ChoiceEnum and replaced with Choices

0.4.0 (2010.03.16)

	added SplitField

	added ChoiceEnum

	added South support for custom model fields

0.3.0

	Added QueryManager

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 django-model-utils

 		
 Setup

 		
 Installation

 		
 Dependencies

 		
 Fields

 		
 StatusField

 		
 MonitorField

 		
 SplitField

 		
 Accessing a SplitField on a model

 		
 Customized excerpting

 		
 UUIDField

 		
 UrlsafeTokenField

 		
 Models

 		
 TimeFramedModel

 		
 TimeStampedModel

 		
 StatusModel

 		
 SoftDeletableModel

 		
 UUIDModel

 		
 SaveSignalHandlingModel

 		
 Model Managers

 		
 InheritanceManager

 		
 JoinManager

 		
 QueryManager

 		
 SoftDeletableManager

 		
 Mixins

 		
 Miscellaneous Utilities

 		
 Choices

 		
 Field Tracker

 		
 Accessing a field tracker

 		
 Tracking specific fields

 		
 Tracking Foreign Key Fields

 		
 Checking changes using signals

 		
 FieldTracker implementation details

 		
 When FieldTracker resets fields state

 		
 Changelog

 		
 4.3.1 (2022-11-15)

 		
 4.3.0

 		
 4.2.0 (2021-10-11)

 		
 4.1.1 (2020-12-01)

 		
 4.1.0 (2020-11-29)

 		
 4.0.0 (2019-12-11)

 		
 3.2.0 (2019.06.21)

 		
 3.1.2 (2018.05.09)

 		
 3.1.1 (2017.12.17)

 		
 3.1.0 (2017.12.11)

 		
 3.0.0 (2017.04.13)

 		
 2.6.1 (2017.01.11)

 		
 2.6 (2016.09.19)

 		
 2.5.2 (2016.08.09)

 		
 2.5.1 (2016.08.03)

 		
 2.5 (2016.04.18)

 		
 2.4 (2015.12.03)

 		
 2.3.1 (2015-07-20)

 		
 2.3 (2015.07.17)

 		
 2.2 (2014.07.31)

 		
 2.1.1 (2014.07.28)

 		
 2.1.0 (2014.07.25)

 		
 2.0.3 (2014.03.19)

 		
 2.0.2 (2014.02.19)

 		
 2.0.1 (2014.02.11)

 		
 2.0 (2014.01.06)

 		
 1.5.0 (2013.08.29)

 		
 1.4.0 (2013.06.03)

 		
 1.3.1 (2013.04.11)

 		
 1.3.0 (2013.03.27)

 		
 1.2.0 (2013.01.27)

 		
 1.1.0 (2012.04.13)

 		
 1.0.0 (2011.06.16)

 		
 0.6.0 (2011.02.18)

 		
 0.5.0 (2010.09.24)

 		
 0.4.0 (2010.03.16)

 		
 0.3.0

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

